γ-Secretase inhibitor-resistant glioblastoma stem cells require RBPJ to propagate.
نویسنده
چکیده
Targeting glioblastoma stem cells with γ-secretase inhibitors (GSIs) disrupts the Notch pathway and has shown some benefit in both pre-clinical models and in patients during phase I/II clinical trials. However, it is largely unknown why some glioblastoma (GBM) does not respond to GSI treatment. In this issue of the JCI, Xie et al. determined that GSI-resistant brain tumor-initiating cells (BTICs) from GBM express a higher level of the gene RBPJ, which encodes a mediator of canonical Notch signaling, compared to non-BTICs. Knockdown of RBPJ in BTICs decreased propagation in vitro and in vivo by inducing apoptosis. Interestingly, RBPJ was shown to regulate a different transcription program than Notch in BTICs by binding CDK9, thereby affecting Pol II-regulated transcript elongation. Targeting CDK9 or c-MYC, an upstream regulator of RBPJ, with small molecules also decreased BTIC propagation, and prolonged survival in mice bearing orthotopic GBM xenografts. This study not only provides a mechanism for GSI treatment resistance, but also identifies two potential therapeutic strategies to target GSI-resistant BTICs.
منابع مشابه
Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch.
The Notch pathway is dysregulated and a potential target in glioblastoma multiforme (GBM). Currently available Notch inhibitors block γ-secretase, which is necessary for Notch processing. However, Notch is first cleaved by α-secretase outside the plasma membrane, via a disintegrin and metalloproteinase-10 and -17. In this work, we used a potent α-secretase inhibitor (ASI) to test inhibition of ...
متن کاملInhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells
Accumulating evidence suggests that cancer cells with stem cell-like phenotypes drive disease progression and therapeutic resistance in glioblastoma (GBM). NOTCH regulates self-renewal and resistance to chemoradiotherapy in GBM stem cells. However, NOTCH-targeted γ-secretase inhibitors (GSIs) exhibited limited efficacy in GBM patients. We found that farnesyltransferase inhibitors (FTIs) signifi...
متن کاملEFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma
Glioblastoma is the most common malignant primary brain tumor. Temozolomide (TMZ) is the standard chemotherapeutic agent for this disease. However, intrinsic and acquired TMZ-resistance represents a major obstacle for this therapy. In order to identify factors involved in TMZ-resistance, we engineered different TMZ-resistant glioblastoma cell lines. Gene expression analysis demonstrated that EF...
متن کاملDose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation, a dose-dependent quantitative mass spec...
متن کاملAdipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity
OBJECTIVE As the obesity pandemic continues to expand, novel molecular targets to reduce obesity-related insulin resistance and Type 2 Diabetes (T2D) continue to be needed. We have recently shown that obesity is associated with reactivated liver Notch signaling, which, in turn, increases hepatic insulin resistance, opening up therapeutic avenues for Notch inhibitors to be repurposed for T2D. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 126 7 شماره
صفحات -
تاریخ انتشار 2016